Integration of Constraint Programming, Artificial Intelligence, and Operations Research : 21st International Conference, CPAIOR 2024, Uppsala, Sweden, May 28-31, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

個数:

Integration of Constraint Programming, Artificial Intelligence, and Operations Research : 21st International Conference, CPAIOR 2024, Uppsala, Sweden, May 28-31, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 317 p.
  • 商品コード 9783031606014

Full Description

This book constitutes the proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, CPAIOR 2024, held in Uppsala, Sweden, during May 28-31, 2024.The 33 full papers and the 9 short papers presented in the proceedings were carefully reviewed and selected from a total of 104 submissions.

The content of the papers focus on new techniques or applications in the area and foster the integration of techniques from different fields dealing with large and complex problems. 

Contents

Core Boosting in SAT-Based Multi-Objective Optimization.- Fair Minimum Representation Clustering.- Proof Logging for the Circuit Constraint.- Probabilistic Lookahead Strong Branching via a Stochastic Abstract Branching Model.- Lookahead, Merge and Reduce for Compiling Relaxed Decision Diagrams for Optimization.- LEO: Learning Efficient Orderings for Multiobjective BDDs.- Minimizing the Cost of Leveraging Influencers in Social Networks: IP and CP Approaches.- Learning Deterministic Surrogates for Robust Convex QCQP.- Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin.- Improving Metaheuristic Effciency for Stochastic Optimization Problems by Sequential Predictive Sampling.- SMT-based Repair of Disjunctive Temporal Networks with Uncertainty: Strong and Weak Controllability.- CaVE: A Cone-aligned Approach for Fast Predict-then-optimize with Binary Linear Programs.- A Constraint Programming Approach for Aircraft Disassembly Scheduling.-  Optimization Over Trained Neural Networks: Taking a Relaxing Walk.- Learning From Scenarios for Repairable Stochastic Scheduling.- Explainable Algorithm Selection for the Capacitated Lot Sizing Problem.- Efficient Structured Perceptron for NP-hard Combinatorial Optimization Problems.- Robustness Verification in Neural Networks.- An Improved Neuro-Symbolic Architecture to Fine-Tune Generative AI Systems.- Bound Tightening using Rolling-Horizon Decomposition for Neural Network Verification.- Learning Heuristics for Combinatorial Optimization Problems on K-Partite Hypergraphs.

最近チェックした商品