Statistical Learning Tools for Electricity Load Forecasting (Statistics for Industry, Technology, and Engineering) (2024)

個数:

Statistical Learning Tools for Electricity Load Forecasting (Statistics for Industry, Technology, and Engineering) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 231 p.
  • 言語 ENG
  • 商品コード 9783031603389

Full Description

This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting.  Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models.  A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques.  Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.

This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas.  Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.

Contents

Introduction.- Part I: A Toolbox of Models.- Additive Modelling of Electricity Demand with mgcv.- Probabilistic GAMs: Beyond Mean Modelling.- Functional Time Series.- Random Forests.- Aggregation of Experts.- Mixed Effects Models for Electricity Load Forecasting.- Part II: Case Studies: Models in Action on Specific Applications.- Disaggregated Forecasting of the Total Consumption.- Aggregation of Multi-Scale Experts.- Short-Term Load Forecasting using Fine-Grained Data.- Functional State Space Models.- Forecasting Daily Peak Demand using GAMs.- Forecasting During the Lockdown Period.

最近チェックした商品