Unified Theory for Fractional and Entire Differential Operators : An Approach via Differential Quadruplets and Boundary Restriction Operators (Frontiers in Elliptic and Parabolic Problems) (2024)

個数:

Unified Theory for Fractional and Entire Differential Operators : An Approach via Differential Quadruplets and Boundary Restriction Operators (Frontiers in Elliptic and Parabolic Problems) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 496 p.
  • 商品コード 9783031583551

Full Description

This monograph proposes a unified theory of the calculus of fractional and standard derivatives by means of an abstract operator-theoretic approach. By highlighting the axiomatic properties shared by standard derivatives, Riemann-Liouville and Caputo derivatives, the author introduces two new classes of objects. The first class concerns differential triplets and differential quadruplets; the second concerns boundary restriction operators. Instances of  boundary restriction operators can be generalized fractional differential operators supplemented with homogeneous boundary conditions. The analysis of these operators comprises:

The computation of adjoint operators;
The definition of abstract boundary values;
The solvability of equations supplemented with inhomogeneous abstract linear boundary conditions;
The analysis of fractional inhomogeneous Dirichlet Problems.

As a result of this approach, two striking consequences are highlighted: Riemann-Liouville and Caputo operators appear to differ only by their boundary conditions; and the boundary values of functions in the domain of fractional operators are closely related to their kernel.

Unified Theory for Fractional and Entire Differential Operators will appeal to researchers in analysis and those who work with fractional derivatives. It is mostly self-contained, covering the necessary background in functional analysis and fractional calculus.

Contents

Introduction.- Background on Functional Analysis.- Background on Fractional Calculus.- Differential Triplets on Hilbert Spaces.- Differential Quadruplets on Banach Spaces.- Fractional Differential Triplets and Quadruplets on Lebesgue Spaces.- Endogenous Boundary Value Problems.- Abstract and Fractional Laplace Operators.

最近チェックした商品