Privacy Preservation in Distributed Systems : Algorithms and Applications (Signals and Communication Technology)

個数:

Privacy Preservation in Distributed Systems : Algorithms and Applications (Signals and Communication Technology)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 商品コード 9783031580123

Full Description

This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy.

Contents

Introduction.- Part I Privacy lssues in Data Aggregation.- LocMIA: Membership Inference Attacks against Aggregated Location Data.- Synthesizing Privacy Preserving Traces: Enhancing Plausibility with Social Networks.- DAML: Practical Secure Protocol for Data Aggregation based Machine Learning.- Enhancing Privacy Preservation in Speech Data Publishing.- Part II Privacy Issues in Indoor Localization.- Lightweight Privacy-Preserving Scheme in WiFi Fingerprint-Based Indoor Localization.- P3LOC: A Privacy-Preserving Paradigm-Driven framework for Indoor Localization.- Preserving Privacy in WiFi Localization with Plausible Dummy Locations.- Part III Privacy-Preserving Offloading in MEC.- Deep Reinforcement Learning-based Joint Optimization of Delay and Privacy in Multiple-User MEC Systems.- Load Balancing for Energy-Harvesting Mobile Edge Computing.- Learning-based Joint Optimization of Energy-Delay and Privacyin Multiple-User Edge-Cloud Collaboration MEC Systems.

最近チェックした商品