自然言語処理のためのPython:NumPy、scikit-learn、Keras、PyTorchを用いたプログラミング(第3版)<br>Python for Natural Language Processing : Programming with NumPy, scikit-learn, Keras, and PyTorch (Cognitive Technologies) (3RD)

個数:

自然言語処理のためのPython:NumPy、scikit-learn、Keras、PyTorchを用いたプログラミング(第3版)
Python for Natural Language Processing : Programming with NumPy, scikit-learn, Keras, and PyTorch (Cognitive Technologies) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 520 p.
  • 言語 ENG
  • 商品コード 9783031575488

Full Description

Since the last edition of this book (2014), progress has been astonishing in all areas of Natural Language Processing, with recent achievements in Text Generation that spurred a media interest going beyond the traditional academic circles. Text Processing has meanwhile become a mainstream industrial tool that is used, to various extents, by countless companies. As such, a revision of this book was deemed necessary to catch up with the recent breakthroughs, and the author discusses models and architectures that have been instrumental in the recent progress of Natural Language Processing.

As in the first two editions, the intention is to expose the reader to the theories used in Natural Language Processing, and to programming examples that are essential for a deep understanding of the concepts. Although present in the previous two editions, Machine Learning is now even more pregnant, having replaced many of the earlier techniques to process text. Many new techniques build on the availability of text. 

Using Python notebooks, the reader will be able to load small corpora, format text, apply the models through executing pieces of code, gradually discover the theoretical parts by possibly modifying the code or the parameters, and traverse theories and concrete problems through a constant interaction between the user and the machine. The data sizes and hardware requirements are kept to a reasonable minimum so that a user can see instantly, or at least quickly, the results of most experiments on most machines.

The book does not assume a deep knowledge of Python, and an introduction to this language aimed at Text Processing is given in Ch. 2, which will enable the reader to touch all the programming concepts, including NumPy arrays and PyTorch tensors as fundamental structures to represent and process numerical data in Python, or Keras for training Neural Networks to classify texts. Covering topics like Word Segmentation and Part-of-Speech and Sequence Annotation, the textbook also gives an in-depth overview of Transformers (for instance, BERT), Self-Attention and Sequence-to-Sequence Architectures. 

Contents

Preface to the third edition.- Preface to the second edition.- Preface to the first edition.- 1. An Overview of Language Processing.- 2. A Tour of Python.- 3. Corpus Processing Tools.- 4. Encoding and Annotation Scheme.- 5. Python for Numerical Computations.- 6. Topics in Information Theory and Machine Learning.- 7. Linear and Logistic Regression.- 8. Neural Networks.- 9. Counting and Indexing Words.- 10. Dense Vector Representations.- 11. Word Sequences.- 12. Words, Parts of Speech, and Morphology.- 13. Subword Segmentation.- 14. Part-of-Speech and Sequence Annotation.- 15. Self-Attention and Transformers.- 16. Pretraining an Encoder: The BERT Language Model.- 17. Sequence-to-Sequence Architectures: Encoder-Decoders and Decoders.- Index.- References.

最近チェックした商品