数理論理学入門:数、集合、構造、対称(第2版)<br>Mathematical Logic : On Numbers, Sets, Structures, and Symmetry (Springer Graduate Texts in Philosophy) (2ND)

個数:

数理論理学入門:数、集合、構造、対称(第2版)
Mathematical Logic : On Numbers, Sets, Structures, and Symmetry (Springer Graduate Texts in Philosophy) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 257 p.
  • 商品コード 9783031562143

Full Description

This textbook is a second edition of the successful, Mathematical Logic: On Numbers, Sets, Structures, and Symmetry. It retains the original two parts found in the first edition, while presenting new material in the form of an added third part to the textbook. The textbook offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions.

Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are usedto study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background. 

Contents

Part I: Logic, Sets, and Numbers.- Chapter 1. First-order Logic.- Chapter 2. Logical seeing.- Chapter 3. What is a Number?.- Chapter 4. Seeing the Number Structures.- Chapter 5. Points, Lines, and the Structure of R.- Chapter 6. Set Theory.- Part II: Relations, Structures, Geometry.- Chapter 7. Relations.- Chapter 8. Definable Elements and Constants.- Chapter 9. Minimal and Order-Minimal Structures.- Chapter 10. Geometry of Definable Sets.- Chapter 11. Where Do Structures Come From?.- Chapter 12. Elementary Extensions and Symmetries.- Chapter 13. Tame vs. Wild.- Chapter 14. First-Order Properties.- Chapter 15. Symmetries and Logical Visibility One More Time.- Part III: Inference, Models, Categoricity and Diversity.- Chapter 16. Logical Inference.- Chapter 17. Categoricity.- Chapter 18. Counting Countable Models.- Chapter 19. Infinitary Logics.- Chapter 20. Symmetry and Definability.- Appendices.- Bibliography.- Index.

最近チェックした商品