A Human-Centered Perspective of Intelligent Personalized Environments and Systems (Human-computer Interaction Series) (2024)

個数:

A Human-Centered Perspective of Intelligent Personalized Environments and Systems (Human-computer Interaction Series) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 292 p.
  • 商品コード 9783031551086

Full Description

This book investigates the potential of combining the more quantitative - data-driven techniques with the more qualitative - theory-driven approaches towards the design of user-centred intelligent systems. It seeks to explore the potential of incorporating factors grounded in psychological theory into adaptive/intelligent routines, mechanisms, technologies and innovations. It highlights models, methods and tools that are emerging from their convergence along with challenges and lessons learned. 

Special emphasis is placed on promoting original insights and paradigms with respect to latest technologies, current research trends, and innovation directions, e.g., incorporating variables derived from psychological theory and individual differences in adaptive intelligent systems so as to increase explainability, fairness, and transparency, and decrease bias during interactions while the control remains with the user.

Contents

Part I: Theory: Individual differences for intelligent personalized environments.- Human factors in user modeling for intelligent systems.- The role of human-centred ai in user modeling, adaptation, and personalization - Models, frameworks, and paradigms.- Fairness and explainability for enabling trust in AI systems.- Part II: Method: User models driven from human factors, inferred from data.- Transparent music preference modeling and recommendation with a model of human memory theory.- Personalization and individual differences in business data analytics.- Inferring Eudaimonia and Hedonia from digital traces.- Computational methods to infer human factors for adaptation and personalization using eye tracking.- Part III: Practice: The human factors in the center of applications and domains.- Coarse-grained detection for personalized online learning interventions.- Psychologically-informed design of energy recommender systems: Are nudges still effective in tailored choice environments?- Personalized persuasive technologies in health and wellness: From theory to practice.

最近チェックした商品