Advances in Deep Generative Models for Medical Artificial Intelligence (Studies in Computational Intelligence)

個数:

Advances in Deep Generative Models for Medical Artificial Intelligence (Studies in Computational Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 商品コード 9783031463402

Full Description

Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence.

This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models.

This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.

Contents

Deep Learning Techniques for 3D-Volumetric Segmentation of Biomedical Images.- Analysis of GAN-based Data Augmentation for GI-Tract Disease Classification.- Deep generative adversarial network-based MRI slices reconstruction and enhancement for Alzheimer's stages classification.- Evaluating the Quality and Diversity of DCGAN-based Generatively Synthesized Diabetic Retinopathy Imagery.- Deep Learning Approaches for End-to-End Modeling of Medical Spatiotemporal Data.- Skin Cancer Classification with Convolutional Deep Neural Networks and Vision Transformers using Transfer Learning.- A New CNN-Based Deep Learning Model Approach for Skin Cancer Detection and Classification.- Machine Learning Based Miscellaneous Objects Detection With Application to Cancer Images.- Advanced deep learning for heart sounds classification.

最近チェックした商品