Marginal and Functional Quantization of Stochastic Processes (Probability Theory and Stochastic Modelling 105) (2023. xviii, 912 S. XVIII, 912 p. 39 illus., 25 illus. in color. 235 m)

個数:

Marginal and Functional Quantization of Stochastic Processes (Probability Theory and Stochastic Modelling 105) (2023. xviii, 912 S. XVIII, 912 p. 39 illus., 25 illus. in color. 235 m)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031454639

Full Description

Vector Quantization, a pioneering discretization method based on nearest neighbor search, emerged in the 1950s primarily in signal processing, electrical engineering, and information theory. Later in the 1960s, it evolved into an automatic classification technique for generating prototypes of extensive datasets. In modern terms, it can be recognized as a seminal contribution to unsupervised learning through the k-means clustering algorithm in data science.

In contrast, Functional Quantization, a more recent area of study dating back to the early 2000s, focuses on the quantization of continuous-time stochastic processes viewed as random vectors in Banach function spaces. This book distinguishes itself by delving into the quantization of random vectors with values in a Banach space—a unique feature of its content. 

Its main objectives are twofold: first, to offer a comprehensive and cohesive overview of the latest developments as well as several new results in optimal quantization theory, spanning both finite and infinite dimensions, building upon the advancements detailed in Graf and Luschgy's Lecture Notes volume. Secondly, it serves to demonstrate how optimal quantization can be employed as a space discretization method within probability theory and numerical probability, particularly in fields like quantitative finance. The main applications to numerical probability are the controlled approximation of regular and conditional expectations by quantization-based cubature formulas, with applications to time-space discretization of Markov processes, typically Brownian diffusions, by quantization trees.

While primarily catering to mathematicians specializing in probability theory and numerical probability, this monograph also holds relevance for data scientists, electrical engineers involved in data transmission, and professionals in economics and logistics who are intrigued by optimal allocation problems.

Contents

Preface.- Notation Index.- Part I. Basics and Marginal Quantization.- 1. Optimal and Stationary Quantizers.- 2. The Finite-Dimensional Setting I.- 3. The Finite-Dimensional Setting II.- Part II. Functional Quantization.- 4. Functional Quantization, Small Ball Probabilities, Metric Entropy and Series Expansions for Gaussian Processes.- 5. Spectral Methods for Gaussian Processes.- 6. Geometry of Optimal and Rate-Optimal Quantizers for Gaussian Processes.- 7. Mean Regular Processes.- Part III. Algorithmic Aspects and Applications:- 8. Optimal Quantization from the Numerical Side (Static).- 9. Applications: Quantization-Based Cubature Formulas.- 10. Quantization-Based Numerical Schemes.- Appendices.- A. Radon Random Vectors, Stochastic Processes and Inequalities.- B. Miscellany.- References.- Index.

最近チェックした商品