Intelligent Systems : 12th Brazilian Conference, BRACIS 2023, Belo Horizonte, Brazil, September 25-29, 2023, Proceedings, Part II (Lecture Notes in Artificial Intelligence)

個数:

Intelligent Systems : 12th Brazilian Conference, BRACIS 2023, Belo Horizonte, Brazil, September 25-29, 2023, Proceedings, Part II (Lecture Notes in Artificial Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 433 p.
  • 商品コード 9783031453885

Full Description

The three-volume set LNAI 14195, 14196, and 14197 constitutes the refereed proceedings of the 12th Brazilian Conference on Intelligent Systems, BRACIS 2023, which took place in Belo Horizonte, Brazil, in September 2023.

The 90 full papers included in the proceedings were carefully reviewed and selected from 242 submissions. They have been organized in topical sections as follows:

Part I: Best papers; resource allocation and planning; rules and feature extraction; AI and education; agent systems; explainability; AI models; 

Part II: Transformer applications; convolutional neural networks; deep learning applications; reinforcement learning and GAN; classification; machine learning analysis;

Part III: Evolutionary algorithms; optimization strategies; computer vision; language and models; graph neural networks; pattern recognition; AI applications. 

Contents

Transformer Model for Fault Detection From Brazilian Pre-Salt Seismic Data.- Evaluating Recent Legal Rhetorical Role Labeling Approaches Supported by Transformer Encoders.- Dog Face Recognition Using Vision Transformer.- Convolutional neural networks for the molecular detection of Covid-19.- Hierarchical Graph Convolutional Networks for Image Classification.- Interpreting Convolutional Neural Networks for Brain Tumor Classification: An Explainable Artificial Intelligence Approach.- Enhancing Stock Market Predictions through the Integration of Convolutional and Recursive LSTM Blocks: A Cross-Market Analysis.- Ensemble architectures and efficient fusion techniques for Convolutional Neural Networks: an analysis on resource optimization strategies.- Dog Face Recognition using Deep Feature Embeddings.- Clinical oncology textual notes analysis using machine learning and deep learning.- EfficientDeepLab For Automated Trachea Segmentation On Medical Images.- Multi-Label Classification of Pathologies in Chest Radiograph Images Using DenseNet.- Does pre-training on brain-related tasks results in better deep-learning-based brain age biomarkers.- Applying Reinforcement Learning for Multiple Functions in Swarm Intelligence.- Deep Reinforcement Learning for Voltage Control in Power Systems.- Performance Analysis of Generative Adversarial Networks and Diffusion Models for Face Aging.- Occluded Face In-painting Using Generative Adversarial Networks - A ReviewClassification of facial images to assist in the diagnosis of Autism Spectrum Disorder: a study on the effect of face detection and landmark identification algorithms.- Constructive Machine Learning and Hierarchical Multi-label Classification for Molecules Design.- AutoMMLC: An Automated and Multi-objective Method for Multi-label Classification.- Merging Traditional Feature Extraction and Deep Learning for Enhanced Hop Variety Classification: A Comparative Study Using the UFOP-HVD Dataset.- Feature Selection and Hyperparameter Fine-tuning in Artificial Neural Networks for Wood Quality Classification.- A Feature-based Out-of-Distribution Detection Approach in Skin Lesion Classification.- A framework for characterizing what makes an instance hard to classify.- Physicochemical Properties for Promoter Classification.- Critical analysis of AI indicators in terms of weighting and aggregation approaches.- Estimating Code Running Time Complexity with Machine LearningThe Effect of Statistical Hypothesis Testing on Machine Learning Model Selection.

最近チェックした商品