Programming-Based Formal Languages and Automata Theory : Design, Implement, Validate, and Prove (Texts in Computer Science)

個数:

Programming-Based Formal Languages and Automata Theory : Design, Implement, Validate, and Prove (Texts in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 524 p.
  • 商品コード 9783031439728

Full Description

This textbook introduces formal languages and automata theory for upper-level undergraduate or beginning graduate students. While it contains the traditional mathematical development usually employed in computational theory courses, it is also quite different from many of them. Machines, grammars, and algorithms developed as part of a constructive proof are intended to be rendered as programs.

The book is divided into four parts that build on each other. Part I reviews fundamental concepts. It introduces programming in FSM and reviews program design. In addition, it reviews essential mathematical background on sets, relations, and reasoning about infinite sets. Part II starts the study of formal languages and automata theory in earnest with regular languages. It first introduces regular expressions and shows how they are used to write programs that generate words in a regular language. Given that regular expressions generate words, it is only natural to ask how a machine can recognize words in a regular language. This leads to the study of deterministic and nondeterministic finite-state machines. Part III starts the exploration of languages that are not regular with context-free languages. It begins with context-free grammars and pushdown automata to generate and recognize context-free languages, and it ends with a discussion of deterministic pushdown automata and illustrates why these automatons are fundamentally different from nondeterministic pushdown automata. Part IV eventually explores languages that are not context-free, known as context-sensitive languages. It starts by discussing the most powerful automaton known to mankind: the Turing machine. It then moves to grammars for context-sensitive languages, and their equivalence with Turing machines is explored. The book ends with a brief chapter introducing complexity theory and explores the question of determining if a solution to a problem is practical.

Contents

Part I: Fundamental Concepts.- 1. Introduction to FSM.- 2. Essential Background.- 3. Types of Proofs.- Part II: Regular Languages.- 4. Regular Expressions.- 5. Deterministic Finite-State Machines.- 6. Nondeterministic Finite State Machines.- 7. Finite-State Automatons and Regular Expressions.- 8. Regular Grammars.- 9. Languages that are not Regular.- Part III: Context-Free Languages.- 10. Context-Free Grammars.- 11. Pushdown Automata.- 12. Equivalence of pdas and cfgs.- 13. Properties of Context-Free Languages.- 14. Deterministic PDAs.- Part IV: Context-Sensitive Languages.- 15. Turing Machines.- 16. Turing Machine Composition.- 17. Turing Machine Extensions.- 18. Context-Sensitive Grammars.- 19. Church-Turing Thesis and Undecidability.- 20. Complexity.- Part V: Epilogue.- 21. Where to Go From Here.

最近チェックした商品