An Invitation to Coarse Groups (Lecture Notes in Mathematics 2339) (1st ed. 2023. 2023. xv, 248 S. XV, 248 p. 8 illus., 6 illus. in color.)

個数:

An Invitation to Coarse Groups (Lecture Notes in Mathematics 2339) (1st ed. 2023. 2023. xv, 248 S. XV, 248 p. 8 illus., 6 illus. in color.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 172 p.
  • 言語 ENG
  • 商品コード 9783031427596

Full Description

This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms "up to uniformly bounded error". These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels.The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered.

Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions.

The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.

Contents

- 1. Introduction. - Part I Basic Theory. - 2. Introduction to the Coarse Category. - 3. Properties of the Category of Coarse Spaces. - 4. Coarse Groups. - 5. Coarse Homomorphisms, Subgroups and Quotients. - 6. Coarse Actions. - 7. Coarse Kernels. - Part II Selected Topics. - 8. Coarse Structures on Set-Groups. - 9. Coarse Structures on Z. - 10. On Bi-Invariant Word Metrics. - 11. A Quest for Coarse Groups that are not Coarsified Set-Groups. - 12. On Coarse Homomorphisms and Coarse Automorphisms. - 13. Spaces of Controlled Maps.