Lectures in Knot Theory : An Exploration of Contemporary Topics (Universitext) (2024)

個数:

Lectures in Knot Theory : An Exploration of Contemporary Topics (Universitext) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 520 p.
  • 言語 ENG
  • 商品コード 9783031400438
  • DDC分類 514.2242

Full Description

This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature. Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject. Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics, physics, biology, and chemistry.

Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject. The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface. The lecture style and array of topical coverage are hoped to inspire independent research and applications of the methods described in the book to other disciplines of science. An introduction to the topology of 3-dimensional manifolds is included in Appendices A and B. Lastly, Appendix C includes a Table of Knots.

Contents

1. History of Knot Theory From Ancient Times to Gauss and His Student Listing.- 2. History of Knot Theory From Gauss to Jones.- 3. FROM FOX 3-COLORING TO THE YANG-BAXTER OPERATOR.- 4. Lecture ?: Goeritz and Seifert Matrices.- 5. Chapter Heading.- 6. The HOMFLYPT and the 2-variable Kauffman Polynomial.- 7. Lecture 8: The Temperley - Lieb Algebra and Braid Groups.- 8. Lecture 9: Symmetrizers of Finite Groups and Jones-Wenzl Idempotents.- 9. Lecture 10: Plucking polynomial of rooted trees and its use in knot theory.- 10. Lecture 11: Basics of Skein Modules.- 11. Lecture 12: The Kauffman Bracket Skein Module.- 12. Lecture 13: The Kauffman Bracket Skein Module and Algebra of Surface I-bundles.- 13. Lecture 14: Multiplicative Structure of the Kauffman Bracket Skein Algebra of the Thickened T-Shirt.- 14. Spin Structure and the Framing Skein Module of Links in 3-Manifolds.- 15. Lecture 16: The Witten - Reshetikhin - Turaev Invariant of 3-manifolds.- 16. Lecture 19: Type A Gram determinant.-17. Lecture 18: Gram Determinants of Type B and Type M b.- 18. Lecture 19: Khovanov homology: a categorification of The Jones polynomial.- 19. Lecture 20: Long Exact Sequence of Khovanov Homology and Torsion.- 20. Lecture 21: Categorification of Skein Modules of Twisted I-bundles over surfaces.- Appendix A: Basics of 3-Dimensional Topology. -Appendix B: Surgery on Links in the 3-Sphere and Kirby's Calculus. -Glossary.- SOlutions.

最近チェックした商品