エネルギーと持続可能性におけるAIを用いた意思決定<br>Decision Making Using AI in Energy and Sustainability : Methods and Models for Policy and Practice (Applied Innovation and Technology Management)

個数:
  • ポイントキャンペーン

エネルギーと持続可能性におけるAIを用いた意思決定
Decision Making Using AI in Energy and Sustainability : Methods and Models for Policy and Practice (Applied Innovation and Technology Management)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 312 p.
  • 商品コード 9783031383861

Full Description

Artificial intelligence (AI) has a huge impact on science and technology, including energy, where access to resources has been a source of geopolitical conflicts. AI can predict the demand and supply of renewable energy, optimize efficiency in energy systems, and improve the management of natural energy resources, among other things. This book explores the use of AI tools for improving the management of energy systems and providing sustainability with smart cities, smart facilities, smart buildings, smart transportation, and smart houses. Featuring research from International Federation for Information Processing's (IFIP) "AI in Energy and Sustainability" working group, this book provides new models and algorithms for AI applications in energy and sustainability fields.  Any short-term, mid-term and long-term forecasting, optimization models, trend foresights and prescriptions based on scenarios are studied in the energy world and the smart systems for sustainability. The contents of this book are valuable for energy researchers, academics, scholars, practitioners and policy makers.

Contents

1. Climate change - Can AI help understanding and more effective facing of various interrelated impacts?- 2. A methodology for linking the Energy-related Policies of the European Green Deal to the 17 SDGs using Machine Learning.- 3. Single-valued neutrosophic CRITIC-based ARAS method for the assessment of sustainable circular supplier selection.- 4. Linguistic-Based MCDM Approach for Climate Change Risk Evaluation Methodology.- 5. Creating a Net-Zero Carbon Emission Scenario Using OSeMOSYS for the Power Sector of Turkey.- 6. Prediction of Downward Surface Solar Radiation Using Particle Swarm Optimization and Neural Networks.- 7. Electricity Demand Prediction: Case of Turkey.- 8. The Impact Of The Wind Energy Power Forecast Accuracy On The Price Of Electricity.- 9. The Power of Combination Models in Energy Demand Forecasting.- 10. Data-driven state classification for energy modeling of machine tools using power signals and part-program information.- 11. Energy Efficiency Optimization Application in Food Production using IIOT based Machine Learning.- 12. Hype: a data-driven tool for smart city profile (SCP) discrimination.- 13. An Integrated Hesitant Fuzzy Linguistic MCDM Methods to Assess Smart City Solutions.- 14. Presence of Renewable Resources in a Smart City for Supplying Clean and Sustainable Energy.- 15. Syrian Household Energy Consumption Behavior Analysis In Turkey: Bayesian Belief Network.- 16. Informativeness in Twitter Textual Contents for Farmer-centric Pest Monitoring.- 17. A Multi-Criteria Decision-Making Model for Technology Selection in Renewable-Based Residential Microgrids.- 18. Energy Management in Power-Split Hybrid Electric Vehicles Using Fuzzy Logic Controller.

最近チェックした商品