Forecasting with Artificial Intelligence : Theory and Applications (Palgrave Advances in the Economics of Innovation and Technology)

個数:

Forecasting with Artificial Intelligence : Theory and Applications (Palgrave Advances in the Economics of Innovation and Technology)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9783031358814

Full Description

This book is a comprehensive guide that explores the intersection of artificial intelligence and forecasting, providing the latest insights and trends in this rapidly evolving field.

The book contains fourteen chapters covering a wide range of topics, including the concept of AI, its impact on economic decision-making, traditional and machine learning-based forecasting methods, challenges in demand forecasting, global forecasting models, meta-learning and feature-based forecasting, ensembling, deep learning, scalability in industrial and optimization applications, and forecasting performance evaluation. With key illustrations, state-of-the-art implementations, best practices, and notable advances, this book offers practical insights into the theory and practice of AI-based forecasting. This book is a valuable resource for anyone involved in forecasting, including forecasters, statisticians, data scientists, business analysts, or decision-makers.

Contents

Part I. Artificial intelligence : present and future.- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA).- 2. Expecting the future: How AI's potential performance will shape current behavior.- Part II. The status of machine learning methods for time series and new products forecasting.- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future.- 4. Machine Learning for New Product Forecasting.- Part III. Global forecasting models.- 5. Forecasting in Big Data with Global Forecasting Models.- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning.- 7. Handling Concept Drift in Global Time Series Forecasting.- 8. Neural network ensembles for univariate time series forecasting.- Part IV. Meta-learning and feature-based forecasting.- 9. Large scale time series forecasting with meta-learning.- 10. Forecasting large collections of time series: feature-based methods.- Part V. Special applications.- 11. Deep Learning based Forecasting: a case study from the online fashion industry.- 12. The intersection of machine learning with forecasting and optimisation: theory and applications.- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting.- 14. The FVA framework for evaluating forecasting performance. 

最近チェックした商品