数値計算フーリエ解析(第2版)<br>Numerical Fourier Analysis (Applied and Numerical Harmonic Analysis) (2ND)

個数:

数値計算フーリエ解析(第2版)
Numerical Fourier Analysis (Applied and Numerical Harmonic Analysis) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 664 p.
  • 商品コード 9783031350047

Full Description

New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods.  To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis.     
The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding fast algorithms in the one- and multidimensional cases. The well-known fast Fourier transforms (FFTs) are discussed, as well as recent results on the construction of the nonequispaced FFTs, high-dimensional FFTs on special lattices, and sparse FFTs.  An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions.  The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for the recovery of structured functions.
This new edition has been revised and updated throughout, featuring new material on a new Fourier approach to the ANOVA decomposition of high-dimensional trigonometric polynomials; new research results on the approximation errors of the nonequispaced fast Fourier transform based on special window functions; and the recently developed ESPIRA algorithm for recovery of exponential sums, among others.
Numerical Fourier Analysis will be of interest to graduate students and researchers in applied mathematics, physics, computer science, engineering, and other areas where Fourier methods play an important role in applications.

Contents

Chapter. 1. Fourier series.- Chapter. 2. Fourier transform.- Chapter. 3. Discrete Fourier transforms.- Chapter. 4. Multidimensional Fourier methods.- Chapter. 5. Fast Fourier transforms.- Chapter. 6. Chebyshev methods and fast DCT algorithms.- Chapter. 7. Fast Fourier transforms for nonequispaced data.- Chapter. 8. High dimensional FFT.- Chapter. 9. Numerical applications of DFT.- Chapter. 10. Prony method for reconstruction of structured functions.- Appendix A.- Index.- References.

最近チェックした商品