連続変数マルコフ過程と確率微分方程式<br>Continuous Parameter Markov Processes and Stochastic Differential Equations (2024. xv, 506 S. XV, 506 p. 4 illus. 235 mm)

個数:

連続変数マルコフ過程と確率微分方程式
Continuous Parameter Markov Processes and Stochastic Differential Equations (2024. xv, 506 S. XV, 506 p. 4 illus. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031341533

Full Description

This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications.  The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples.

After a review of some background material, the reader is introduced to semigroup theory, including the Hille-Yosida Theorem,  used to construct continuous parameter Markov processes.  Illustrated with examples, it is a cornerstone of Feller's seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes,  and   processes with independent increments, or Lévy processes. The greater part of the book is devoted to  Itô's fascinating theory of stochastic differential equations,  and to the study of  asymptotic properties of diffusions  in all dimensions, such as   explosion, transience, recurrence,  existence of steady states,  and the speed of convergence to equilibrium.  A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions  and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes.  Among Special Topics chapters, two study anomalous diffusions: one on  skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.

Contents

1. A review of Martingaels, stopping times and the Markov property.- 2. Semigroup theory and Markov processes.-3. Regularity of Markov process sample paths.- 4. Continuous parameter jump Markov processes.- 5. Processes with independent increments.- 6. The stochastic integral.- 7. Construction of difficusions as solutions of stochastic differential equations.- 8. Itô's Lemma.- 9. Cameron-Martin-Girsanov theorem.- 10. Support of nonsingular diffusions.- 11. Transience and recurrence of multidimensional diffusions.- 12. Criteria for explosion.- 13. Absorption, reflection and other transformations of Markov processes.- 14. The speed of convergence to equilibrium of discrete parameter Markov processes and Diffusions.- 15. Probabilistic representation of solutions to certain PDEs.- 16. Probabilistic solution of the classical Dirichlet problem.- 17. The functional Central Limit Theorem for ergodic Markov processes.- 18. Asymptotic stability for singular diffusions.- 19. Stochastic integrals with L2-Martingales.- 20. Local time for Brownian motion.- 21. Construction of one dimensional diffusions by Semigroups.- 22. Eigenfunction expansions of transition probabilities for one-dimensional diffusions.- 23. Special Topic: The Martingale Problem.- 24. Special topic: multiphase homogenization for transport in periodic media.- 25. Special topic: skew random walk and skew Brownian motion.- 26. Special topic: piecewise deterministic Markov processes in population biology.- A. The Hille-Yosida theorem and closed graph theorem.- References.- Related textbooks and monographs.

最近チェックした商品