Scalable Algorithms for Contact Problems (Advances in Mechanics and Mathematics) (2ND)

個数:

Scalable Algorithms for Contact Problems (Advances in Mechanics and Mathematics) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 443 p.
  • 商品コード 9783031335822

Full Description

This book presents a comprehensive treatment of recently developed scalable algorithms for solving multibody contact problems of linear elasticity. The brand-new feature of these algorithms is their theoretically supported numerical scalability (i.e., asymptotically linear complexity) and parallel scalability demonstrated in solving problems discretized by billions of degrees of freedom. The theory covers solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca's friction, and transient contact problems. In addition, it also covers BEM discretization, treating jumping coefficients, floating bodies, mortar non-penetration conditions, etc. 
This second edition includes updated content, including a new chapter on hybrid domain decomposition methods for huge contact problems. Furthermore, new sections describe the latest algorithm improvements, e.g., the fast reconstruction of displacements, the adaptive reorthogonalization of dual constraints, and an updated chapter on parallel implementation. Several chapters are extended to give an independent exposition of classical bounds on the spectrum of mass and dual stiffness matrices, a benchmark for Coulomb orthotropic friction, details of discretization, etc. 
The exposition is divided into four parts, the first of which reviews auxiliary linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third chapter. The presentation includes continuous formulation, discretization, domain decomposition, optimality results, and numerical experiments. The final part contains extensions to contact shape optimization, plasticity, and HPC implementation. Graduate students and researchers in mechanical engineering, computational engineering, and applied mathematics will find this book of great value and interest.

Contents

Chapter. 1 Contact Problems and Their Solution.- Part. I. Basic Concepts.- Chapter. 2. Linear Algebra.- Chapter. 3. Optimization.- Chapter. 4. Analysis.- Part. II. Optimal QP and QCQP Algorithms.- Chapter. 5. Conjugate Gradients.- Chapter. 6. Gradient Projection for Separable Convex Sets.- Chapter. 7. MPGP for Separable QCQP.- Chapter. 8. MPRGP for Bound-Constrained QP.- Chapter. 9. Solvers for Separable and Equality QP/QCQP Problems.- Part. III. Scalable Algorithms for Contact Problems.- Chapter. 10. TFETI for Scalar Problems.- Chapter. 11. Frictionless Contact Problems.- Chapter. 12. Contact Problems with Friction.- Chapter. 13. Transient Contact Problems.- Chapter. 14. TBETI.- Chapter. 15. Hybrid TFETI and TBETI.- Chapter. 16. Mortars.- Chapter. 17. Preconditioning and Scaling.- Part. IV. Other Applications and Parallel Implementation.- Chapter. 18. Contact with Plasticity.- Chapter.19. Contact Shape Optimization.- Chapter. 20. Massively Parallel Implementation.- Notation and List of Symbols.

最近チェックした商品