Advances in Knowledge Discovery and Data Mining : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part III (Lecture Notes in Computer Science) (2023)

個数:

Advances in Knowledge Discovery and Data Mining : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part III (Lecture Notes in Computer Science) (2023)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 417 p.
  • 言語 ENG
  • 商品コード 9783031333798
  • DDC分類 006.312

Full Description

The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25-28, 2023.
The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.

Contents

Big data.- Toward Explainable Recommendation Via Counterfactual Reasoning.- Online Volume Optimization for Notifications via Long Short-Term Value Modeling.- Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases.- Financial data.- Joint Latent Topic Discovery and Expectation Modeling for Financial Markets.- Let the model make financial senses: a Text2Text generative approach for financial complaint identification.- Information retrieval and search.- Web-scale Semantic Product Search With Large Language Models.- Multi-task learning based Keywords weighted Siamese Model for semantic retrieval.- Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion.- MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense Retrieval.- Isotropic Representation Can Improve Dense Retrieval.- Knowledge-Enhanced Prototypical Network with Structural Semantics forFew-Shot Relation Classification.- Internet of Things.- MIDFA : Memory-Based Instance Division and Feature Aggregation Network for Video Object Detection.- Medical and biological data.- Vision Transformers for Small Histological Datasets learned through  Knowledge Distillation.- Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis.- DKFM: Dual Knowledge-guided Fusion Model for Drug Recommendation.- Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge.- Multimedia and multimodal data.- An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance.- Dynamically-Scaled Deep Canonical Correlation Analysis.- TCR: Short Video Title Generation and Cover Selection with Attention Refinement.- ItrievalKD: An Iterative Retrieval Framework Assisted with Knowledge Distillation for Noisy Text-to-Image Retrieval.- Recommender systems.- Semantic Relation Transfer for Non-overlapped Cross-domain Recommendations.- Interest Driven Graph Structure Learning for Session-Based Recommendation.- Multi-behavior Guided Temporal Graph Attention Network for Recommendation.- Pure Spectral Graph Embeddings: Reinterpreting Graph Convolution for Top-N Recommendation.- Meta-learning Enhanced Next POI Recommendation by Leveraging Check-ins from Auxiliary Cities.- Global-Aware External Attention Deep Model for Sequential Recommendation.- Aggregately Diversified Bundle Recommendation via Popularity Debiasing and Configuration-aware Reranking.- Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation.- kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval.- Staying or Leaving: A Knowledge-Enhanced User Simulator for Reinforcement Learning Based Short Video Recommendation.- RLMixer: A Reinforcement Learning Approach For Integrated Ranking With Contrastive User Preference Modeling.

最近チェックした商品