特異点の幾何学・位相幾何学ハンドブック 第4集<br>Handbook of Geometry and Topology of Singularities IV

個数:

特異点の幾何学・位相幾何学ハンドブック 第4集
Handbook of Geometry and Topology of Singularities IV

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 608 p.
  • 商品コード 9783031319242

Full Description

This is the fourth volume of the Handbook of Geometry and Topology of Singularities, a series that aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research.

This volume consists of twelve chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I to III. Amongst the topics studied in this volume are the Nash blow up, the space of arcs in algebraic varieties, determinantal singularities, Lipschitz geometry, indices of vector fields and 1-forms, motivic characteristic classes, the Hilbert-Samuel multiplicity and comparison theorems that spring from the classical De Rham complex.

Singularities are ubiquitous in mathematics and science in general. Singularity theory is a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways.

The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Contents

1 Lê Dũng Tráng and Bernard Teissier, Limits of tangents, Whitney stratifications and a Plücker type formula.- 2  Anne Frühbis-Krüger and Matthias Zach, Determinantal singularities.- 3 Shihoko Ishii, Singularities, the space of arcs and applications to birational geometry.- 4 Hussein Mourtada, Jet schemes and their applications in singularities, toric resolutions and integer partitions.- 5 Wolfgang Ebeling and Sabir M. Gusein-Zade, Indices of vector fields and 1-forms.- 6 Shoji Yokura, Motivic Hirzebruch class and related topics.- 7 Guillaume Valette, Regular vectors and bi-Lipschitz trivial stratifications in o-minimal structures.- 8 Lev Birbrair and Andrei Gabrielov, Lipschitz Geometry of Real Semialgebraic Surfaces.- 9 Alexandre Fernandes and José Edson Sampaio, Bi-Lipschitz invariance of the multiplicity.- 10 Lorenzo Fantini and Anne Pichon, On Lipschitz Normally Embedded singularities.- 11 Ana Bravo and Santiago Encinas, Hilbert-Samuel multiplicity andfinite projections.- 12 Francisco J. Castro-Jiménez, David Mond and Luis Narváez-Macarro, Logarithmic Comparison Theorems.