Visualization and Imputation of Missing Values : With Applications in R (Statistics and Computing)

個数:

Visualization and Imputation of Missing Values : With Applications in R (Statistics and Computing)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 462 p.
  • 言語 ENG
  • 商品コード 9783031300721

Full Description

This book explores visualization and imputation techniques for missing values and presents practical applications using the statistical software R. It explains the concepts of common imputation methods with a focus on visualization, description of data problems and practical solutions using R, including modern methods of robust imputation, imputation based on deep learning and imputation for complex data. By describing the advantages, disadvantages and pitfalls of each method, the book presents a clear picture of which imputation methods are applicable given a specific data set at hand.

The material covered includes the pre-analysis of data, visualization of missing values in incomplete data, single and multiple imputation, deductive imputation and outlier replacement, model-based methods including methods based on robust estimates, non-linear methods such as tree-based and deep learning methods, imputation of compositional data, imputation quality evaluation from visual diagnostics to precision measures, coverage rates and prediction performance and a description of different model- and design-based simulation designs for the evaluation. The book also features a topic-focused introduction to R and R code is provided in each chapter to explain the practical application of the described methodology.



Addressed to researchers, practitioners and students who work with incomplete data, the book offers an introduction to the subject as well as a discussion of recent developments in the field. It is suitable for beginners to the topic and advanced readers alike.

Contents

Preface.- 1 Topic-focused Introduction to R and Data Sets Used.- 2  Distribution, Pre-analysis of Missing Values and Data Quality.- 3  Detection of the Missing Values Mechanism with Tests and Models.- 4  Visualisation of Missing Values.- 5  General Considerations on Univariate Methods, Single and Multiple Imputation.- 6 Deductive Imputation and Outlier Replacement.- 7 Imputation Without a Model.- 8 Model-based Methods.- 9 Non-linear Methods.- 10 Methods for compositional data.- 11  Evaluation of the Quality of Imputation.- 12 Simulation of Data for Simulation Studies.

最近チェックした商品