Full Description
This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022.
The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
Contents
Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation.