Applied Calculus with R (2023)

個数:

Applied Calculus with R (2023)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 532 p.
  • 言語 ENG
  • 商品コード 9783031285738
  • DDC分類 515.0285

Full Description

This textbook integrates scientific programming with the use of R and uses it both as a tool for applied problems and to aid in learning calculus ideas.  Adding R, which is free and used widely outside academia, introduces students to programming and expands the types of problems students can engage. There are no expectations that a student has any coding experience to use this text.
While this is an applied calculus text including real world data sets, a student that decides to go on in mathematics should develop sufficient algebraic skills so that they can be successful in a more traditional second semester calculus course. Hopefully, the applications provide some motivation to learn techniques and theory and to take additional math courses. The book contains chapters in the appendix for algebra review as algebra skills can always be improved. Exercise sets and projects are included throughout with numerous exercises based on graphs.

Contents

A Brief Introduction to R.- Describing a Graph.- The Function Gallery.- I: Change and the Derivative.- How Fast is CO2 Increasing?.- The Idea of the Derivative.- Formulas Quantifying Change.-The Microscope Equation.- Successive Approximations to Estimate Derivatives.- The Derivative Graphically.- The Formal Derivative as a Limit.- Basic Derivative Rules.- Produce Rule.- Quotient Rule.- Chain Rule.- Derivatives with R.- End Behavior of a Function - L'Hospital's Rule.- II: Applications of the Derivative.- How Do We Know the Shape of a Function?.- Finding Extremes.- Optimization.- Derivatives of Functions of Two Variables.- Related Rates.- Surge Function.- Differential Equations - Preliminaries.- Differential Equations - Population Growth Models.- Differential Equations - Predator Prey.- Differential equations - SIR Model.- Project: The Gini Coefficient - Prelude to Section III.- III: Accumulation and the Integral.- Area Under Curves.- The Accumulation Function.- The Fundamental Theorem of Calculus.- Techniques of Integration - The u Substitution.- Techniques of Integration - Integration by Parts.- IV: Appendices - Algebra Review.- Algebra Review - Functions and Graphs.- Algebra Review - Adding and Multiplying Fractions.- Algebra Review - Exponents.- Algebra Review - Lines.- Algebra Review - Expanding, Factoring, and Roots.- Algebra Review - Function Composition.- Glossary.- Answers to Odd Problems.- R Code for Figures.

最近チェックした商品