Algorithms for Constructing Computably Enumerable Sets (Computer Science Foundations and Applied Logic) (2023)

個数:

Algorithms for Constructing Computably Enumerable Sets (Computer Science Foundations and Applied Logic) (2023)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 183 p.
  • 言語 ENG
  • 商品コード 9783031269066
  • DDC分類 004.0151

Full Description

Logicians have developed beautiful algorithmic techniques for the construction of computably enumerable sets.  This textbook presents these techniques in a unified way that should appeal to computer scientists.

Specifically, the book explains, organizes, and compares various algorithmic techniques used in computability theory (which was formerly called "classical recursion theory").  This area of study has produced some of the most beautiful and subtle algorithms ever developed for any problems.  These algorithms are little-known outside of a niche within the mathematical logic community.  By presenting them in a style familiar to computer scientists, the intent is to greatly broaden their influence and appeal.

Topics and features:

·         All other books in this field focus on the mathematical results, rather than on the algorithms.

·         There are many exercises here, most of which relate to details of the algorithms.

·         The proofs involving priority trees are written here in greater detail, and with more intuition, than can be found elsewhere in the literature.

·         The algorithms are presented in a pseudocode very similar to that used in textbooks (such as that by Cormen, Leiserson, Rivest, and Stein) on concrete algorithms.

·         In addition to their aesthetic value, the algorithmic ideas developed for these abstract problems might find applications in more practical areas.

Graduate students in computer science or in mathematical logic constitute the primary audience. Furthermore, when the author taught a one-semester graduate course based on this material, a number of advanced undergraduates, majoring in computer science or mathematics or both, took the course and flourished in it.

Kenneth J. Supowit is an Associate Professor Emeritus, Department of Computer Science & Engineering, Ohio State University, Columbus, Ohio, US.

Contents

1 Index of notation and terms.- 2 Set theory, requirements, witnesses.- 3 What's new in this chapter?.- 4 Priorities (a splitting theorem).- 5 Reductions, comparability (Kleene-Post Theorem).- 6 Finite injury (Friedberg-Muchnik Theorem).- 7 The Permanence Lemma.- 8 Permitting (Friedberg-Muchnik below C Theorem).- 9 Length of agreement (Sacks Splitting Theorem).- 10 Introduction to infinite injury.- 11 A tree of guesses (Weak Thickness Lemma).- 12 An infinitely branching tree (Thickness Lemma).- 13 True stages (another proof of the Thickness Lemma).- 14 Joint custody (Minimal Pair Theorem).- 15 Witness lists (Density Theorem).- 16 The theme of this book: delaying tactics.- Appendix A: a pairing function.- Bibliograph.- Solutions to selected exercises.

最近チェックした商品