Software Verification and Formal Methods for ML-Enabled Autonomous Systems : 5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings (Lecture Notes in Com

個数:

Software Verification and Formal Methods for ML-Enabled Autonomous Systems : 5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings (Lecture Notes in Com

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 205 p.
  • 言語 ENG
  • 商品コード 9783031212215

Full Description

This book constitutes the refereed proceedings of the 5th International Workshop on Software Verification and Formal Methods for ML-Enables Autonomous Systems, FoMLAS 2022, and the 15th International Workshop on Numerical Software Verification, NSV 2022, which took place in Haifa, Israel, in July/August 2022. 
The volume contains 8 full papers from the FoMLAS 2022 workshop and 3 full papers from the NSV 2022 workshop. The FoMLAS workshop is dedicated to the development of novel formal methods techniques to discussing on how formal methods can be used to increase predictability, explainability, and accountability of ML-enabled autonomous systems. NSV 2022 is focusing on the challenges of the verification of cyber-physical systems with machine learning components. 

Contents

FoMLAS 2022.- VPN: Verification of Poisoning in Neural Networks.- A Cascade of Checkers for Run-time Certification of Local Robustness.- CEG4N: Counter-Example Guided Neural Network Quantization Refinement .- Minimal Multi-Layer Modifications of Deep Neural Networks.- Differentiable Logics for Neural Network Training and Verification.- Neural Networks in Imandra: Matrix Representation as a Verification Choice.- Self-Correcting Neural Networks For Safe Classification.- Self-Correcting Neural Networks For Safe Classification.- NSV 2022.- Verified Numerical Methods for Ordinary Differential Equations.- Neural Network Precision Tuning Using Stochastic Arithmetic.- MLTL Multi-type (MLTLM): A Logic for Reasoning about Signals of Different Types. 

 

最近チェックした商品