Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering & the Sciences)

個数:

Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering & the Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 635 p.
  • 商品コード 9783031207327

Full Description

This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students. The main benefit for the readers is understanding the widely used machine learning and deep learning techniques and gaining practical procedures for applying machine learning and deep learning in predictive toxicology. 

Contents

Machine Learning and Deep Learning Promotes Predictive Toxicology for Risk Assessment of Chemicals.- Multi-Modal Deep Learning Approaches for Molecular Toxicity prediction.- Emerging Machine Learning Techniques in Predicting Adverse Drug Reactions.- Drug Effect Deep Learner Based on Graphical Convolutional Network.- AOP Based Machine Learning for Toxicity Prediction.-  Graph Kernel Learning for Predictive Toxicity Models.- Optimize and Strengthen Machine Learning Models Based on in vitro Assays with Mecha-nistic Knowledge and Real-World Data.-  Multitask Learning for Quantitative Structure-Activity Relationships: A Tutorial.- Isalos Predictive Analytics Platform: Cheminformatics, Nanoinformatics and Data Mining Applications.- ED Profiler: Machine Learning Tool for Screening Potential Endocrine Disrupting Chemicals.- Quantitative Target-specific Toxicity Prediction Modeling (QTTPM): Coupling Machine Learning with Dynamic Protein-Ligand Interaction Descriptors (dyPLIDs) to Predict Androgen Receptor-mediated Toxicity.- Mold2 Descriptors Facilitate Development of Machine Learning and Deep Learning Models for Predicting Toxicity of Chemicals.- Applicability Domain Characterization for Machine Learning QSAR Models.-  Controlling for Confounding in Complex Survey Machine Learning Models to Assess Drug Safety and Risk. 

最近チェックした商品