Introduction to Reaction-Diffusion Equations : Theory and Applications to Spatial Ecology and Evolutionary Biology (Lecture Notes on Mathematical Modelling in the Life Sciences)

個数:

Introduction to Reaction-Diffusion Equations : Theory and Applications to Spatial Ecology and Evolutionary Biology (Lecture Notes on Mathematical Modelling in the Life Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 312 p.
  • 商品コード 9783031204210

Full Description

This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts.

The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles.

The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation.

The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionarybranching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait.

The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems.

Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.



 

 



 

 

 

Contents

Part I Linear Theory.- 1. The Maximum Principle and the Principal Eigenvalues for Single Equations.- 2. The Principal Eigenvalue for Periodic-Parabolic Problems.- 3. The Maximum Principle and the Principal Eigenvalue for Systems.- 4. The Principal Floquet Bundle for Parabolic Equations.- Part II Ecological Dynamics.- 5. The Logistic Equation With Diffusion.- 6. Spreading in Homogeneous and Shifting Environments.- 7. The Lotka-Volterra Competition-Diffusion Systems for Two Species.- 8. Dynamics of Phytoplankton Populations.- Part III Evolutionary Dynamics.- 9. Elements of Adaptive Dynamics.- 10. Selection-Mutation Models.- Part IV Appendices.- A. The Fixed Point Index.- B. The Krein-Rutman Theorem.- C. Subhomogeneous Dynamics.- D. Existence of Connecting Orbits.- E. Abstract Competition Systems in Ordered Banach Spaces.- Index

最近チェックした商品