Belief Functions: Theory and Applications : 7th International Conference, BELIEF 2022, Paris, France, October 26-28, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Belief Functions: Theory and Applications : 7th International Conference, BELIEF 2022, Paris, France, October 26-28, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 317 p.
  • 言語 ENG
  • 商品コード 9783031178009
  • DDC分類 519.2

Full Description

This book constitutes the refereed proceedings of the 7th International Conference on Belief Functions, BELIEF 2022, held in Paris, France, in October 2022.The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine learning, information fusion, and pattern recognition.

The 29 full papers presented in this book were carefully selected and reviewed from 31 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more.

Contents

Evidential Clustering A Distributional Approach for Soft Clustering Comparison and Evaluation.- Causal transfer evidential clustering.- Jiang A variational Bayesian clustering approach to acoustic emission interpretation including soft labels.- Evidential clustering by Competitive Agglomeration.- Imperfect Labels with Belief Functions for Active Learning.- Machine Learning and Pattern Recognition An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers.- Ordinal Classification using Single-model Evidential Extreme Learning Machine.- Reliability-based imbalanced data classification with Dempster-Shafer theory.- Evidential regression by synthesizing feature selection and parameters learning.- Algorithms and Evidential Operators Distributed EK-NN classification.- On improving a group of evidential sources with different contextual corrections.- Measure of Information Content of Basic Belief Assignments.- Belief functions on On Modelling and Solving the Shortest PathProblem with Evidential Weights.- Data and Information Fusion Heterogeneous Image Fusion for Target Recognition based on Evidence Reasoning.- Cluster Decomposition of the Body of Evidence.- Evidential Trustworthiness Estimation for Cooperative Perception.- An Intelligent System for Managing Uncertain Temporal Flood events.- Statistical Inference - Graphical Models A practical strategy for valid partial prior-dependent possibilistic inference.- On Conditional Belief Functions in the Dempster-Shafer Theory.- Valid inferential models offer performance and probativeness assurances.Links with Other Uncertainty Theories A qualitative counterpart of belief functions with application to uncertainty propagation in safety cases.- The Extension of Dempster's Combination Rule Based on Generalized Credal Sets.- A Correspondence between Credal Partitions and Fuzzy Orthopartitions.- Toward updating belief functions over Belnap-Dunn logic.- Applications Real bird dataset with imprecise and uncertainvalues.- Addressing ambiguity in randomized reinsurance contracts using belief functions.- Evidential filtering and spatio-temporal gradient for micro-movements analysis in the context of bedsores prevention.- Hybrid Artificial Immune Recognition System with improved belief classification process.

最近チェックした商品