Simplifying Medical Ultrasound : Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Simplifying Medical Ultrasound : Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 194 p.
  • 言語 ENG
  • 商品コード 9783031169014
  • DDC分類 616.07543

Full Description

This book constitutes the proceedings of the Third International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2022, held on September 18, 2022, in conjunction with MICCAI 2022, the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference took place in Singapore.

The 18 papers presented in this book were carefully reviewed and selected from 23 submissions. They were organized in topical sections as follows: classification and detection; Segmentation and Reconstruction; and Assessment, Guidance and Robotics.

Chapters "Left Ventricle Contouring of Apical Three-Chamber Views on 2D Echocardiography" and "3D Cardiac Anatomy Reconstruction from 2D Segmentations: a Study using Synthetic Data" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Contents

Classification and Detection.- Rapid Lung Ultrasound COVID-19 Severity Scoring with Resource-Efficient Deep Feature Extraction.- Spatio-temporal model for EUS video detection of Pancreatic Anatomy Structures.- RL based Unsupervised Video Summarization framework for Ultrasound Imaging.- Prediction of Kidney Transplant Function with Machine Learning from Computational Ultrasound Features.- Differential Learning from Sparse and Noisy Labels for Robust Detection of Clinical Landmarks in Echo Cine Series.- End-to-End Myocardial Infarction Classification from Echocardiographic Scans.- View Classification of Color Doppler Echocardiography via Automatic Alignment between Doppler and B-mode Imaging.- Segmentation and Reconstruction.- AI-enabled Assessment of Cardiac Systolic and Diastolic Function from Echocardiography.- 3D Cardiac Anatomy Reconstruction from 2D Segmentations: a Study using Synthetic Data.- Left Ventricle Contouring of Apical Three-Chamber Views on 2D Echocardiography.- Adnexal Mass Segmentation with Ultrasound Data Synthesis.- Self-Knowledge Distillation for First Trimester Ultrasound Saliency Prediction.- A Universal End-to-End Universal Description of Pulse-Echo Ultrasound Image Reconstruction.- Assessment, Guidance and Robotics.- Learning Generalized Non-Rigid Multimodal Biomedical Image Registration from Generic Point Set Data.- Contact force Prediction for a Robotic Transesophageal Ultrasound Probe via Operating Torque Sensing.- Meta-Registration: Learning Test-Time Optimization for Single-Pair Image Registration.- Automatic Quality Assessment of First Trimester Crown-Rump-Length Ultrasound Images.- Towards Multi-Modal Self-Supervised Video and Ultrasound Pose Estimation for Laparoscopic Liver Surgery

最近チェックした商品