Essentials of Excel VBA, Python, and R : Volume II: Financial Derivatives, Risk Management and Machine Learning (2ND)

個数:

Essentials of Excel VBA, Python, and R : Volume II: Financial Derivatives, Risk Management and Machine Learning (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 523 p.
  • 商品コード 9783031142826

Full Description

This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry.
This second volume is designed for advanced courses in financial derivatives, risk management, and machine learning and financial management. In this volume we extensively use Excel, Python, and R to analyze the above-mentioned topics. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the first volume for dedicated content on financial statistics, and portfolio analysis.

Contents

Chapter 1. Introduction.- Chapter 2. Introduction to Excel Programming.- Chapter 3. Introduction to VBA Programming.- Chapter 4. Professional Techniques Used in Excel and Excel VBA Techniques.- Chapter 5. Decision Tree Approach for Binomial Option Pricing Model.- Chapter 6. Microsoft Excel Approach to Estimating Alternative Option Pricing Models.- Chapter 7. Alternative Methods to Estimate Implied Variances.- Chapter 8. Greek Letters and Portfolio Insurance.- Chapter 9. Portfolio Analysis and Option Strategies.- Chapter 10. Alternative Simulation Methods and Their Applications.- Chapter 11. Linear Models for Regression.- Chapter 12. Kernel Linear Model.- Chapter 13. Neural Networks and Deep Learning.- Chapter 14. Applications of Alternative Machine Learning Methods for Credit Card Default Forecasting.- Chapter 15. An Application of Deep Neural Networks for Predicting Credit Card Delinquencies.- Chapter 16. Binomial/Trinomial Tree Option Pricing Using Python.- Chapter 17. Financial Ratios and its Applications.- Chapter 18. Time Value Money Analysis.- Chapter 19. Capital Budgeting under Certainty and Uncertainty.- Chapter 20. Financial Planning and Forecasting.- Chapter 21. Hedge Ratios: Theory and Applications.- Chapter 22. Application of simultaneous equation in finance research: Methods and empirical results.- Chapter 23. Using R Program to Estimate Binomial Option Pricing Model and Black & Scholes Option Pricing Model.

最近チェックした商品