データ・プライバシー(テキスト)<br>Guide to Data Privacy : Models, Technologies, Solutions (Undergraduate Topics in Computer Science)

個数:

データ・プライバシー(テキスト)
Guide to Data Privacy : Models, Technologies, Solutions (Undergraduate Topics in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 313 p.
  • 言語 ENG
  • 商品コード 9783031128363

Full Description

Data privacy technologies are essential for implementing information systems with privacy by design.Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure.  For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training?  This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement—among other models—differential privacy, k-anonymity, and secure multiparty computation.

Topics and features:

Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)
Discusses privacy requirements and tools fordifferent types of scenarios, including privacy for data, for computations, and for users
Offers characterization of privacy models, comparing their differences, advantages, and disadvantages
Describes some of the most relevant algorithms to implement privacy models
Includes examples of data protection mechanisms

This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.

Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.

Contents

1. Introduction.- 2. Basics of Cryptography and Machine Learning.- 3. Privacy Models and Privacy Mechanisms.- 4. User's Privacy.- 5. Avoiding Disclosure from Computations.- 6. Avoiding Disclosure from Data Masking Methods.- 7. Other.- 8. Conclusions.

最近チェックした商品