Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians (Springer Monographs in Mathematics)

個数:

Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians (Springer Monographs in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 538 p.
  • 商品コード 9783031108846

Full Description

This book introduces and discusses the self-adjoint extension problem for symmetric operators on Hilbert space. It presents the classical von Neumann and Krein-Vishik-Birman extension schemes both in their modern form and from a historical perspective, and provides a detailed analysis of a range of applications beyond the standard pedagogical examples (the latter are indexed in a final appendix for the reader's convenience).Self-adjointness of operators on Hilbert space representing quantum observables, in particular quantum Hamiltonians, is required to ensure real-valued energy levels, unitary evolution and, more generally, a self-consistent theory. Physical heuristics often produce candidate Hamiltonians that are only symmetric: their extension to suitably larger domains of self-adjointness, when possible, amounts to declaring additional physical states the operator must act on in order to have a consistent physics, and distinct self-adjoint extensions describe different physics.Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling.

The discussed applications concern models of topical relevance in modern mathematical physics currently receiving new or renewed interest, in particular from the point of view of classifying self-adjoint realisations of certain Hamiltonians and studying their spectral and scattering properties. The analysis also addresses intermediate technical questions such as characterising the corresponding operator closures and adjoints. Applications include hydrogenoid Hamiltonians, Dirac-Coulomb Hamiltonians, models of geometric quantum confinement and transmission on degenerate Riemannian manifolds of Grushin type, and models of few-body quantum particles with zero-range interaction.

Graduate students and non-expert readers will benefit from a preliminary mathematical chapter collecting all the necessary pre-requisites on symmetric and self-adjoint operators on Hilbert space (including the spectral theorem), and from a further appendix presenting the emergence from physical principles of the requirement of self-adjointness for observables in quantum mechanics.

Contents

- Part I Theory. - 1. Generalities on Symmetric and Self-Adjoint Operators on Hilbert Space. - 2. Classical Self-Adjoint Extension Schemes. - Part II Applications. - 3. Hydrogenoid Spectra with Central Perturbations. - 4. Dirac-Coulomb Hamiltonians for Heavy Nuclei. - 5. Quantum Particle on Grushin Structures. - 6. Models of Zero-Range Interaction for the Bosonic Trimer at Unitarity. - Appendix A: Physical Requirements Prescribing Self-Adjointness of Quantum Observables. - Appendix B: References to Pedagogical Examples.

最近チェックした商品