Stochastic Calculus via Regularizations (Bocconi & Springer Series)

個数:

Stochastic Calculus via Regularizations (Bocconi & Springer Series)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 638 p.
  • 商品コード 9783031094484

Full Description

The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure  of the integrator process, they generalize the usual Itô and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness.  It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregularintegrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.

Contents

- 1. Review on Basic Probability Theory. - 2. Processes, Brownian Motion and Martingales. - 3. Fractional Brownian Motion and Related Processes. - 4. Stochastic Integration via Regularization. - 5. Itô Integrals. - 6. Stability of the Covariation and Itô's Formula. - 7. Change of probability and martingale representation. - 8. About finite quadratic variation: examples. - 9. Hermite Polynomials and Wiener Chaos. - 10. Elements of Wiener Analysis. - 11. Elements of Non-causal Calculus. - 12. Itô Classical Stochastic Differential Equations. - 13. Itô SDEs with Non-Lipschitz Coefficients. - 14. Föllmer-Dirichlet Processes. - 15. Weak Dirichlet Processes. - Stochastic Calculus with n-Covariations. - Calculus via Regularization and Rough Paths.

最近チェックした商品