Social Media Analysis for Event Detection (Lecture Notes in Social Networks)

個数:

Social Media Analysis for Event Detection (Lecture Notes in Social Networks)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 229 p.
  • 言語 ENG
  • 商品コード 9783031082443

Full Description

This book includes chapters which discuss effective and efficient approaches in dealing with various aspects of social media analysis by using machine learning techniques from clustering to deep learning. A variety of theoretical aspects, application domains and case studies are covered to highlight how it is affordable to maximize the benefit of various applications from postings on social media platforms. Social media platforms have significantly influenced and reshaped various social aspects. They have set new means of communication and interaction between people, turning the whole world into a small village where people with internet connect can easily communicate without feeling any barriers. This has attracted the attention of researchers who have developed techniques and tools capable of studying various aspects of posts on social media platforms with main concentration on Twitter. This book addresses challenging applications in this dynamic domain where it is not possible to continue applying conventional techniques in studying social media postings. The content of this book helps the reader in developing own perspective about how to benefit from machine learning techniques in dealing with social media postings and how social media postings may directly influence various applications.

Contents

Chapter 1. A network-based approach to understanding international cooperation in environmental protection (Andreea Nita).- Chapter 2. Critical Mass and Data Integrity Diagnostics of a Twitter Social Contagion Monitor (Amruta Deshpande).- Chapter 3. TenFor: Tool to Mine Interesting Events from Security Forums Leveraging Tensor Decomposition (Risul Islam).- Chapter 4. Profile Fusion in Social Networks: A Data-Driven Approach -Youcef Benkhedda).- Chapter 5. RISECURE: Metro Transit Disruptions Detection Using Social Media Mining And Graph Convolution (Omer Zulqar).- Chapter 6. Local Taxonomy Construction: An Information Retrieval Approach Using Representation Learning (Mayank Kejriwal).- Chapter 7. The evolution of online sentiments across Italy during first and second wave of the COVID-19 pandemic (Francesco Scotti).- Chapter 8. Inferring Degree of Localization and Popularity of Twitter Topics and Persons using Temporal Features (Aleksey Panasyuk).- Chapter 9. Covid-19 and Vaccine Tweet Analysis (Eren Alp).

最近チェックした商品