Handbook of Nature-Inspired Optimization Algorithms: The State of the Art : Volume II: Solving Constrained Single Objective Real-Parameter Optimization Problems (Studies in Systems, Decision and Control) (2022)

個数:

Handbook of Nature-Inspired Optimization Algorithms: The State of the Art : Volume II: Solving Constrained Single Objective Real-Parameter Optimization Problems (Studies in Systems, Decision and Control) (2022)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 214 p.
  • 言語 ENG
  • 商品コード 9783031075155
  • DDC分類 519.6

Full Description

This book presents recent contributions and significant development, advanced issues, and challenges. In real-world problems and applications, most of the optimization problems involve different types of constraints. These problems are called constrained optimization problems (COPs). The optimization of the constrained optimization problems is considered a challenging task since the optimum solution(s) must be feasible. In their original design, evolutionary algorithms (EAs) are able to solve unconstrained optimization problems effectively. As a result, in the past decade, many researchers have developed a variety of constraint handling techniques, incorporated into (EAs) designs, to counter this deficiency.

The main objective for this book is to make available a self-contained collection of modern research addressing the general constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduateclass on optimization, but will also be useful for interested senior students working on their research projects.

Contents

Particle swarm optimization based optimization for in-dustry inspection.- Ant Algorithms: from Drawback Identification to Quality and Speed Improvement.- Fault location techniques based on traveling waves with application in the protection of distribution systems with renewable energy and particle swarm optimization.- Improved Particle Swarm Optimization and Non-Quadratic Penalty Method for Non-Linear Programming Problems with Equality Constraints.- Recent Trends in Face Recognition Using Metaheuristic Optimization.