科学のための数学・統計学(テキスト)<br>Mathematics and Statistics for Science (1st ed. 2022. 2022. xvi, 964 S. XVI, 964 p. 360 illus., 321 illus. in)

個数:

科学のための数学・統計学(テキスト)
Mathematics and Statistics for Science (1st ed. 2022. 2022. xvi, 964 S. XVI, 964 p. 360 illus., 321 illus. in)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031053177

Full Description

Mathematics and statistics are the bedrock of modern science. No matter which branch of science you plan to work in, you simply cannot avoid quantitative approaches. And while you won't always need to know a great deal of theory, you will need to know how to apply mathematical and statistical methods in realistic scenarios. That is precisely what this book teaches. It covers the mathematical and statistical topics that are ubiquitous in early undergraduate courses, but does so in a way that is directly linked to science.
Beginning with the use of units and functions, this book covers key topics such as complex numbers, vectors and matrices, differentiation (both single and multivariable), integration, elementary differential equations, probability, random variables, inference and linear regression. Each topic is illustrated with widely-used scientific equations (such as the ideal gas law or the Nernst equation) and real scientific data, often taken directly from recent scientific papers. The emphasis throughout is on practical solutions, including the use of computational tools (such as Wolfram Alpha or R), not theoretical development. There is a large number of exercises, divided into mathematical drills and scientific applications, and full solutions to all the exercises are available to instructors.
Mathematics and Statistics for Science covers the core methods in mathematics and statistics necessary for a university degree in science, highlighting practical solutions and scientific applications. Its pragmatic approach is ideal for students who need to apply mathematics and statistics in a real scientific setting, whether in the physical sciences, life sciences or medicine.

Contents

Part I Units and Measurement.- 1 Units.- 2 Measurement, rounding and uncertainty.- Part II Functions and Complex Numbers.- 3 Functions.- 4 Exponential and log functions.- 5 Periodic functions.- 6 Linearising functions.- 7 Complex numbers.- Part III Vectors, Matrices and Linear Systems.- 8 Vectors.- 9 Matrices.- 10 Systems of linear equations.- 11 Solving systems of linear equations using matrices.- Part IV Differentiation: Functions of One Variable.- 12 Limits.- 13 Differentiation as a limit.- 14. Differentiation in practice.- 15 Numerical differentiation.- 16 Implicit differentiation.- 17 Maxima and minima.- Part V Differentiation: Functions of Multiple Variables.- 18 Functions of multiple variables.- 19 Partial derivatives.- 20 Extreme of functions of two (or more) variables.- Part VI Integration.- 21 The area under a curve.- 22 Calculating antiderivatives and areas.- 23 Integration techniques.- 24 Numerical integration.- Part VII Differential Equations.- 25 First-order ordinary differential equations.- 26 Numerical solutions of differential equations.- Part VIII Probability.- 27 Probability foundations.- 28 Random variables.- 29 Binomial distribution.- 30 Conditional probability.- 31 Total probability rule.- Part IX Statistical inference.- 32 Hypothesis test.- 33 Hypothesis testing in practice.- 34 Estimation and likelihood.- Part X Discrete Probability Distributions.- 35 Simulation and visualisation.- 36 Mean.- 37 Variance.- 38 Discrete probability models.- Part XI Continuous Probability Distributions.- 39 Continuous random variables.- 40 Common continuous probability models.- 41 Normal distribution and inference.- Part XII Linear Regression.- 42 Fitting linear functions: theory and practice.- 43 Quantifying relationships.- References.- Index.

最近チェックした商品