Data Cleaning (Synthesis Lectures on Data Management)

個数:

Data Cleaning (Synthesis Lectures on Data Management)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 69 p.
  • 言語 ENG
  • 商品コード 9783031007699

Full Description

Data warehouses consolidate various activities of a business and often form the backbone for generating reports that support important business decisions. Errors in data tend to creep in for a variety of reasons. Some of these reasons include errors during input data collection and errors while merging data collected independently across different databases. These errors in data warehouses often result in erroneous upstream reports, and could impact business decisions negatively. Therefore, one of the critical challenges while maintaining large data warehouses is that of ensuring the quality of data in the data warehouse remains high. The process of maintaining high data quality is commonly referred to as data cleaning. In this book, we first discuss the goals of data cleaning. Often, the goals of data cleaning are not well defined and could mean different solutions in different scenarios. Toward clarifying these goals, we abstract out a common set of data cleaning tasks that often need to be addressed. This abstraction allows us to develop solutions for these common data cleaning tasks. We then discuss a few popular approaches for developing such solutions. In particular, we focus on an operator-centric approach for developing a data cleaning platform. The operator-centric approach involves the development of customizable operators that could be used as building blocks for developing common solutions. This is similar to the approach of relational algebra for query processing. The basic set of operators can be put together to build complex queries. Finally, we discuss the development of custom scripts which leverage the basic data cleaning operators along with relational operators to implement effective solutions for data cleaning tasks.

Contents

Preface.- Acknowledgments.- Introduction.- Technological Approaches.- Similarity Functions.- Operator: Similarity Join.- Operator: Clustering.- Operator: Parsing.- Task: Record Matching.- Task: Deduplication.- Data Cleaning Scripts.- Conclusion.- Bibliography.- Authors' Biographies.

最近チェックした商品