統計的推論の基礎:ランダム誤差の意味<br>Fundamentals of Statistical Inference : What is the Meaning of Random Error? (Springerbriefs in Applied Statistics and Econometrics)

個数:

統計的推論の基礎:ランダム誤差の意味
Fundamentals of Statistical Inference : What is the Meaning of Random Error? (Springerbriefs in Applied Statistics and Econometrics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 132 p.
  • 商品コード 9783030990909

Full Description

This book provides a coherent description of foundational matters concerning statistical inference and shows how statistics can help us make inductive inferences about a broader context, based only on a limited dataset such as a random sample drawn from a larger population. By relating those basics to the methodological debate about inferential errors associated with p-values and statistical significance testing, readers are provided with a clear grasp of what statistical inference presupposes, and what it can and cannot do. To facilitate intuition, the representations throughout the book are as non-technical as possible.
The central inspiration behind the text comes from the scientific debate about good statistical practices and the replication crisis. Calls for statistical reform include an unprecedented methodological warning from the American Statistical Association in 2016, a special issue "Statistical Inference in the 21st Century:A World Beyond p < 0.05" of The American Statistician in 2019, and a widely supported call to "Retire statistical significance" in Nature in 2019.
The book elucidates the probabilistic foundations and the potential of sample-based inferences, including random data generation, effect size estimation, and the assessment of estimation uncertainty caused by random error. Based on a thorough understanding of those basics, it then describes the p-value concept and the null-hypothesis-significance-testing ritual, and finally points out the ensuing inferential errors. This provides readers with the competence to avoid ill-guided statistical routines and misinterpretations of statistical quantities in the future.Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular setof data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate.

Contents

- 1. Introduction. - 2. The Meaning of Scientific and Statistical Inference. - 3. The Basics of Statistical Inference: Simple Random Sampling. - 4. Estimation Uncertainty in Complex Sampling Designs. - 5. Knowledge Accumulation Through Meta-analysis and Replications. - 6. The p-Value and Statistical Significance Testing. - 7. Statistical Inference in Experiments. - 8. Better Inference in the 21st Century: A World Beyond p < 0.05.

最近チェックした商品