距離空間(テキスト)<br>Metric Spaces : A Companion to Analysis (Springer Undergraduate Mathematics Series)

個数:

距離空間(テキスト)
Metric Spaces : A Companion to Analysis (Springer Undergraduate Mathematics Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 244 p.
  • 言語 ENG
  • 商品コード 9783030949457

Full Description

This textbook presents the theory of Metric Spaces necessary for studying analysis beyond one real variable. Rich in examples, exercises and motivation, it provides a careful and clear exposition at a pace appropriate to the material.
The book covers the main topics of metric space theory that the student of analysis is likely to need. Starting with an overview defining the principal examples of metric spaces in analysis (chapter 1), it turns to the basic theory (chapter 2) covering open and closed sets, convergence, completeness and continuity (including a treatment of continuous linear mappings). There is also a brief dive into general topology, showing how metric spaces fit into a wider theory. The following chapter is devoted to proving the completeness of the classical spaces. The text then embarks on a study of spaces with important special properties. Compact spaces, separable spaces, complete spaces and connected spaces each have a chapter devoted to them. A particular feature of the book is the occasional excursion into analysis. Examples include the Mazur-Ulam theorem, Picard's theorem on existence of solutions to ordinary differential equations, and space filling curves.
This text will be useful to all undergraduate students of mathematics, especially those who require metric space concepts for topics such as multivariate analysis, differential equations, complex analysis, functional analysis, and topology. It includes a large number of exercises, varying from routine to challenging. The prerequisites are a first course in real analysis of one real variable, an acquaintance with set theory, and some experience with rigorous proofs.

Contents

- 1. Metric Spaces. - 2. Basic Theory of Metric Spaces. - 3. Completeness of the Classical Spaces. - 4. Compact Spaces. - 5. Separable Spaces. - 6. Properties of Complete Spaces. - 7. Connected Spaces. - Afterword.

最近チェックした商品