組み合わせ・統計データ解析における序列化<br>Seriation in Combinatorial and Statistical Data Analysis (Advanced Information and Knowledge Processing)

個数:

組み合わせ・統計データ解析における序列化
Seriation in Combinatorial and Statistical Data Analysis (Advanced Information and Knowledge Processing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 277 p.
  • 言語 ENG
  • 商品コード 9783030926939

Full Description

This monograph offers an original broad and very diverse exploration of the seriation domain in data analysis, together with building a specific relation to clustering.Relative to a data table crossing a set of objects and a set of descriptive attributes, the search for orders which correspond respectively to these two sets is formalized mathematically and statistically.

State-of-the-art methods are created and compared with classical methods and a thorough understanding of the mutual relationships between these methods is clearly expressed. The authors distinguish two families of methods:

Geometric representation methods
Algorithmic and Combinatorial methods

Original and accurate methods are provided in the framework for both families. Their basis and comparison is made on both theoretical and experimental levels. The experimental analysis is very varied and very comprehensive. Seriation in Combinatorial and Statistical Data Analysis has a unique character in the literature falling within the fields of Data Analysis, Data Mining and Knowledge Discovery. It will be a valuable resource for students and researchers in the latter fields.

Contents

Preface.- Acknowledgements.- General Introduction. Methods and History.- Seriation from Proximity Variance Analysis.- Main Approachs in Seriation. The Attraction Pole Case.- Comparing Geometrical and Ordinal Seriation Methods in Formal and Real Cases.- A New Family of Combinatorial Algorithms in Seriation.- Clustering Methods from Proximity Variance Analysis.- Conclusion and Developments.

最近チェックした商品