Discrete and Computational Geometry, Graphs, and Games : 21st Japanese Conference, JCDCGGG 2018, Quezon City, Philippines, September 1-3, 2018, Revised Selected Papers (Theoretical Computer Science and General Issues)

個数:

Discrete and Computational Geometry, Graphs, and Games : 21st Japanese Conference, JCDCGGG 2018, Quezon City, Philippines, September 1-3, 2018, Revised Selected Papers (Theoretical Computer Science and General Issues)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 187 p.
  • 言語 ENG
  • 商品コード 9783030900472

Full Description

This book constitutes the thoroughly refereed post-conference proceedings of the 21st Japanese Conference on Discrete and Computational Geometry and Graphs, JCDCGGG 2018, held in Quezon City, Philippines, in September 2018.
The total of 14 papers included in this volume was carefully reviewed and selected from 25 submissions. The papers feature advances made in the field of computational geometry and focus on emerging technologies, new methodology and applications, graph theory and dynamics.

Contents

On Geometric Graphs on Point Sets in the Plane.- The Two-distance Sets in Dimension Four.- Negative Instance for the Edge Patrolling Beacon Problem.- Global Location-Domination in the Join and Cartesian Product of Graphs.- The Metric Dimension of the Join of Paths and Cycles.- Barnette's Conjecture Through the Lens of the ModkP Complexity Classes.- Amiltonicity of graphs on surfaces in terms of toughness and scattering number - A survey.- On Structural Parameterizations of Node Kayles.- Robustness in power-law kinetic systems with reactant-determined interactions.- Toward Unfolding Doubly Covered n-Stars.- Crystallographic Flat Origami from n-Uniform Tilings.- Packing Cube Nets into Rectangles with O(1) Holes.- On the Complexity of Jelly-no-Puzzle.- Computational Complexity of Two Pencil Puzzles.