Multivariate Statistical Machine Learning Methods for Genomic Prediction

個数:

Multivariate Statistical Machine Learning Methods for Genomic Prediction

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 691 p.
  • 言語 ENG
  • 商品コード 9783030890094
  • DDC分類 570.285

Full Description

This book is open access under a CC BY 4.0 license
This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.  To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Contents

Preface.- Chapter 1.- General elements of genomic selection and statistical learning.- Chapter. 2.- Preprocessing tools for data preparation.- Chapter. 3.- Elements for building supervised statistical machine learning models.- Chapter. 4.- Overfitting, model tuning and evaluation of prediction performance.- Chapter. 5.- Linear Mixed Models.- Chapter. 6.- Bayesian Genomic Linear Regression.- Chapter. 7.- Bayesian and classical prediction models for categorical and count data.- Chapter. 8.- Reproducing Kernel Hilbert Spaces Regression and Classification Methods.- Chapter. 9.- Support vector machines and support vector regression.- Chapter. 10.- Fundamentals of artificial neural networks and deep learning.- Chapter. 11.- Artificial neural networks and deep learning for genomic prediction of continuous outcomes.- Chapter. 12.- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes.- Chapter. 13.- Convolutional neural networks.- Chapter. 14.- Functional regression.- Chapter. 15.- Random forest for genomic prediction.

最近チェックした商品