Machine and Deep Learning in Oncology, Medical Physics and Radiology (2ND)

個数:

Machine and Deep Learning in Oncology, Medical Physics and Radiology (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 513 p.
  • 商品コード 9783030830496

Full Description

This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members ofapplied machine learning communities.

 

Contents

Part I. Introduction.- 1. What are Machine and Deep Learning?.- 2. Computational Learning Basics.- 3. Overview of Conventional Machine Learning Methods.- 4. Overview of Deep Machine Learning Methods.- 5. Quantum Computing for Machine Learning.- 6. Performance Evaluation.- 7. Software Tools for Machine and Deep learning.- 8. Data sharing, protection and bioethics.- Part II. Machine Learning for Medical Image Analysis.- 9. Detection of Cancer Lesions from Imaging.- 10. Diagnosis of Malignant and Benign Tumours.- 11. Auto-contouring for image-guidance and treatment planning.- Part III. Machine Learning for Treatment planning & Delivery.- 12. Quality Assurance and error prediction.- 13. Knowledge-based treatment planning.- 14. Intelligent respiratory motion management.- Part IV. Machine Learning for Outcomes Modeling and Decision Support.- 15. Prediction of oncology treatment outcomes.- 16. Radiomics and radiogenomics.- 17. Modelling of Radiotherapy Response (TCP/NTCP).- 18. Smartadaptive treatment strategies.- 19. Machine learning in clinical trials.

最近チェックした商品