Data Warehousing and Analytics : Fueling the Data Engine (Data-centric Systems and Applications)

個数:

Data Warehousing and Analytics : Fueling the Data Engine (Data-centric Systems and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 635 p.
  • 言語 ENG
  • 商品コード 9783030819781
  • DDC分類 005.745

Full Description

This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge.

The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics).

This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.

Contents

1. Introduction.- Part I: Star Schema.- 2. Simple Star Schemas.- 3. Creating Facts and Dimensions: More Complex Processes.- Part II: Snowflake and Bridge Tables.- 4. Hierarchies.- 5. Bridge Tables.- 6. Temporal Data Warehousing.- Part III: Advanced Dimension.- 7. Determinant Dimensions.- 8. Junk Dimensions.- 9. Dimension Keys.- 10. One-Attribute Dimensions.- Part IV: Multi-Fact and Multi-Input.- 11. Multi-Fact Star Schemas.- 12. Slicing a Fact.- 13. Multi-Input Operational Databases.- Part V: Data Warehousing Granularity and Evolution.- 14. Data Warehousing Granularity and Levels of Aggregation.- 15. Designing Lowest-Level Star Schemas.- 16. Levels of Aggregation: Adding and Removing Dimensions.- 17. Levels of Aggregation and Bridge Tables.- 18. Active Data Warehousing.- Part VI: OLAP, Business Intelligence, and Data Analytics.- 19. Online Analytical Processing (OLAP).- 20. Pre- and Post-Data Warehousing.- 21. Data Analytics for Data Warehousing.

最近チェックした商品