Machine Learning for Critical Internet of Medical Things : Applications and Use Cases (2022)

個数:

Machine Learning for Critical Internet of Medical Things : Applications and Use Cases (2022)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 261 p.
  • 言語 ENG
  • 商品コード 9783030809300
  • DDC分類 610.285631

Full Description

This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how machine learning can also help make fast and more accurate disease diagnoses, easily identify patients, help in new types of therapies or treatments, model small-molecule drugs in pharmaceutical sector, and help with innovations via integrated technologies such as artificial intelligence as well as deep learning. The authors show how machine learning also improves the physician's and doctor's medical capabilities to better diagnosis their patients. This book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning that will enhance the efficiency and effectiveness of the healthcare system.

Provides researchers in machine and deep learning with a conceptual understanding of various methodologies of implementing the technologies in medical areas;
Discusses the role machine learning and IoT play into locating different virus and diseases across the globe, such as COVID-19, Ebola, and cervical cancer;
Includes fundamentals and advances in machine learning in the medical field, supported by significant case studies and practical applications.

Contents

Introduction.- An Introduction to Basic Concepts on Machine Learning, its architecture and framework.- Machine Learning Models and techniques.- Diseases diagnosis and prediction using Machine Learning.- Machine learning for Mobile/e-health, Tele-medical and Remote healthcare networks.- Machine learning in biomedical, Neuro-critical and medical image processing field.- AI, Deep learning and machine learning enabled connected health informatics.- Machine learning enabled smart healthcare system.- Machine learning based efficient health monitoring systems.- Machine learning case study for virus disease Ebola, COVID-19 consequences.- CASE Study: Machine Learning in Medical domain for Cervical Cancer.- Use cases and applications of machine learning in medical domain.- Conclusion.

最近チェックした商品