自然言語・音声処理のための深層学習アプローチ<br>Deep Learning Approaches for Spoken and Natural Language Processing (Signals and Communication Technology)

個数:

自然言語・音声処理のための深層学習アプローチ
Deep Learning Approaches for Spoken and Natural Language Processing (Signals and Communication Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 165 p.
  • 言語 ENG
  • 商品コード 9783030797775

Full Description

This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work.

Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications;
Presents and escalates the research trends and future direction of language and speech processing;
Includes theoretical research, experimental results, and applications of deep learning.

Contents

Introduction.- Fundamentals of Speech Perception, Production and Acquisition.- How to focus on Phonetics, Phonology and Prosody.- Analysis of Paralinguistic in Speech and Language.- Factor affecting in designing of a particular language Corpus.- Role of Deep Learning methods in Speaker and Language Identification.- Analysis of Language, Speech and Audio Signals.- Use of Deep learning approaches in Speech Coding and Enhancement.- Case studies of Speech Synthesis and Spoken Language Generation.- Processing of Speech Recognition.- Design and Development of DNN based Speech.- Recognition and Language Processing systems.- Implementation of Speech Recognition.- Visualize the Spoken Language Processing systems.- Spoken and Language Processing.- Conclusion.

最近チェックした商品