バナッハ空間と微分可能性、微分形式と応用(テキスト)<br>Differentiability in Banach Spaces, Differential Forms and Applications (2021)

個数:

バナッハ空間と微分可能性、微分形式と応用(テキスト)
Differentiability in Banach Spaces, Differential Forms and Applications (2021)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 362 p.
  • 言語 ENG
  • 商品コード 9783030778361

Full Description

This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the finalchapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.

Contents

Introduction.- Chapter 1. Differentiation in R^n.- Chapter 2. Linear Operators in Banach Spaces.- Chapter 3. Differentiation in Banach Spaces.- Chapter 4. Vector Fields.- Chapter 5. Vectors Integration, Potential Theory.- Chapter 6. Differential Forms, Stoke's Theorem.- Chapter 7. Applications to the Stoke's Theorem.- Appendix A. Basics of Analysis.- Appendix B. Differentiable Manifolds, Lie Groups.- Appendix C. Tensor Algebra.- Bibliography.- Index.

最近チェックした商品