Computational Intelligence in Recent Communication Networks (Eai/springer Innovations in Communication and Computing)

個数:

Computational Intelligence in Recent Communication Networks (Eai/springer Innovations in Communication and Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 273 p.
  • 言語 ENG
  • 商品コード 9783030771843

Full Description

This book focuses on the use of Artificial Intelligence and Machine Learning (AI/ML) based techniques to solve issues related to communication networks, their layers, as well as their applications. The book first offers an introduction to recent trends regarding communication networks. The authors then provide an overview of theoretical concepts of AI/ML, techniques and protocols used in different layers of communication. Furthermore, this book presents solutions that help analyze complex patterns in user data and ultimately improve productivity. Throughout, AI/ML-based solutions are provided, for topics such as signal detection, channel modeling, resource optimization, routing protocol design, transport layer optimization, user/application behavior prediction, software-defined networking, congestion control, communication network optimization, security, and anomaly detection. The book features chapters from a large spectrum of authors including researchers, students, as well as industrials involved in research and development.

Contents

Chapter 1. An Overview of Blockchain and 5G Networks.- Chapter 2. Deep Learning Approach for Interference Mitigation in FBMC/OQAM-MIMO Systems.- Chapter 3. Deep Learning in Non-Orthogonal Multiple Access for 5G and beyond Networks.- Chapter 4. Traffic Sign Detection: A Comparative Study between CNN and RNN.- Chapter 5. Merging Attack-Defense Tree and Game Theory to Analyze Vehicular Ad-Hoc Network Security.- Chapter 6. A Secure Vehicle to Everything (V2X) Communication Model for Intelligent Transportation System.- Chapter 7. A Novel Unsupervised Learning Method for Intrusion Detection in Software Defined Networks.- Chapter 8. Deep Reinforcement Learning Modeling of a V2V communication-based Bike Avoidance Protocol for Increased Vehicular Flow.- Chapter 9. Deep Learning-based Modeling for Pedestrian Perception and Decision Making in Refuge Island for Autonomous Driving.- Chapter 10. Machine Learning for Hate Speech Detection in Arabic Social Media.- Chapter 11. PDDL Planning and Ontologies, a Tool for Automatic Composition of Intentional-Contextual Web Services.- Chapter 12. QSAR anti-HIV Feature Selection and Prediction for Drug Discovery using Genetic Algorithm and Machine Learning Algorithms.- Chapter 13. Mining Electronic Health Records of patient using Linked Data for Ranking Diseases.- Chapter 14. Deep Neural Networks based Delay Driving the Alpha Factors Ranking based Clustering: Exploring the COVID-19 Pandemic's Impact on the Economy and Markets.- Chapter 15. An Artificial Immune System for the Management of the Emergency Divisions.

最近チェックした商品