Multi-UAS Minimum Time Search in Dynamic and Uncertain Environments (Springer Theses) (2021)

個数:

Multi-UAS Minimum Time Search in Dynamic and Uncertain Environments (Springer Theses) (2021)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 183 p.
  • 言語 ENG
  • 商品コード 9783030765613
  • DDC分類 006.3824

Full Description

This book proposes some novel approaches for finding unmanned aerial vehicle trajectories to reach targets with unknown location in minimum time. At first, it reviews probabilistic search algorithms that have been used for dealing with the minimum time search (MTS) problem, and discusses how metaheuristics, and in particular the ant colony optimization algorithm (ACO), can help to find high-quality solutions with low computational time. Then, it describes two ACO-based approaches to solve the discrete MTS problem and the continuous MTS problem, respectively. In turn, it reports on the evaluation of the ACO-based discrete and continuous approaches to the MTS problem in different simulated scenarios, showing that the methods outperform in most all the cases over other state-of-the-art approaches. In the last part of the thesis, the work of integration of the proposed techniques in the ground control station developed by Airbus to control ATLANTE UAV is reported in detail, providing practical insights into the implementation of these methods for real UAVs.

Contents

 Introduction.- State of the Art.- Problem Formulation and Optimization Approach.- MTS Algorithms for Cardinal UAV Motion Models.

最近チェックした商品