Advances in Knowledge Discovery and Data Mining : 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part III (Lecture Notes in Artificial Intelligence)

個数:

Advances in Knowledge Discovery and Data Mining : 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part III (Lecture Notes in Artificial Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 434 p.
  • 商品コード 9783030757670

Full Description

The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows:

Part I: Applications of knowledge discovery and data mining of specialized data;

Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics;

Part III: Representation learning and embedding, and learning from data.

Contents

Representation Learning and Embedding.- Episode Adaptive Embedding Networks for Few-shot Learning.- Universal Representation for Code.- Self-supervised Adaptive Aggregator Learning on Graph.- A Fast Algorithm for Simultaneous Sparse Approximation.- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning.- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification.- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models.- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network.- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning.- Self-supervised Graph Representation Learning with Variational Inference.- Manifold Approximation and Projection by Maximizing Graph Information.- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping.- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction.- Human-Understandable Decision Making for Visual Recognition.- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding.- Transferring Domain Knowledge with an Adviser in Continuous Tasks.- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach.- Quality Control for Hierarchical Classification with Incomplete Annotations.- Learning from Data.- Learning Discriminative Features using Multi-label Dual Space.- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering.- BanditRank: Learning to Rank Using Contextual Bandits.- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach.- Meta-Context Transformers for Domain-Specific Response Generation.- A Multi-task Kernel Learning Algorithm for Survival Analysis.- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection.- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction.- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning.- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition.- Reinforced Natural Language Inference for Distantly Supervised Relation Classification.- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction.- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function.- Incorporating Relational Knowledge in Explainable Fake News Detection.- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction.

最近チェックした商品